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Sampling of the NMR time domain along concentric rings
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Abstract

We present a novel approach to sampling the NMR time domain, whereby the sampling points are aligned on concentric rings, which
we term concentric ring sampling (CRS). Radial sampling constitutes a special case of CRS where each ring has the same number of
points and the same relative orientation. We derive theoretically that the most efficient CRS approach is to place progressively more
points on rings of larger radius, with the number of points growing linearly with the radius, a method that we call linearly increasing

CRS (LCRS). For cases of significant undersampling to reduce measurement time, a randomized LCRS (RLCRS) is also described.
A theoretical treatment of these approaches is provided, including an assessment of artifacts and sensitivity. The analytical treatment
of sensitivity also addresses the sensitivity of radially sampled data processed by Fourier transform. Optimized CRS approaches are
found to produce artifact-free spectra of the same resolution as Cartesian sampling, for the same measurement time. Additionally, opti-
mized approaches consistently yield fewer and smaller artifacts than radial sampling, and have a sensitivity equal to Cartesian and better
than radial sampling. We demonstrate the method using numerical simulations, as well as a 3D HNCO experiment on protein G B1
domain.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

With the recent push to discover faster methods for
measuring multidimensional NMR spectra, significant
attention has been focused on alternatives to the conven-
tional Cartesian sampling of the time domain, such as the
‘‘radial’’ approaches, which measure points along radial
spokes [1–17], or the methods that measure a randomly
selected subset of the points from a Cartesian grid, often
weighted according to the signal envelope [18–22]. These
efforts have been motivated by the discovery that it is pos-
sible, in many cases, to use one of the new patterns coupled
to a suitable processing method to obtain very high resolu-
tion spectral information, with very limited sampling of the
time domain. Until very recently, most groups exploring
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these techniques have employed alternative methods for
processing the data to produce spectral information, rather
than the conventional multidimensional Fourier transform
(FT), such as reconstruction from projections
[8–10,13,16,17,23], analysis of projected peak positions
[1–7,14,15,24,25], maximum entropy reconstruction
[18–20,22,26], or multidimensional decomposition [21,27].

We recently considered the question of whether the
multidimensional Fourier transform could be used to pro-
cess radially sampled data [28], an issue also addressed
very recently by Marion [29]. The FT has the advantage
of being a linear transform with well-known properties,
producing quantitative spectra. We found that the FT
could be rewritten in polar coordinates, allowing the
direct transformation of the radial data to yield a spec-
trum. One can derive analytically that such a spectrum
will reproduce peak positions and shapes correctly, but
with corruption of the baseline by a high-order Bessel
function in cases of limited sampling. Such an artifact
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pattern has also been demonstrated empirically by Kazi-
mierczuk and co-workers in a parallel effort, using the
generic point-by-point equation for the discrete FT on
the radially sampled data [30], although it is important
to note that a proper weighting factor is required for each
point to produce quantitative spectra [28].

It is a well-known fact that the observed artifact pattern
in a spectrum produced by Fourier transformation is the
direct consequence of the sampling pattern [20,31,32], sug-
gesting that the artifacts could be manipulated by rearrang-
ing the sampling points. Here, we consider sampling along
concentric rings. Radial sampling is a special case of con-
centric ring sampling (CRS), with the same number of
points on each ring; a logical generalization would vary
the number of points on each ring, and/or their relative
orientation.

We show that the theoretical approach we developed
previously for the radial case extends naturally to general-
ized sampling on rings. Using this theory, we propose line-

arly increasing CRS (LCRS) and randomized LCRS

(RLCRS) patterns that yield significant reductions in the
number and sizes of artifacts over the radial method, for
the same numbers of sampling points. While radial sam-
pling has been utilized in a number of other fields, both
as the input for the Fourier transform (for example in
[33–36] among others) and also as the input for full inter-
polation of the time domain [37], we are not aware of
any prior study of the generalized sampling (LCRS/
RLCRS) we have proposed here. Additionally, unlike radi-
al sampling, these new patterns have equal sensitivity to
Cartesian sampling for the same measurement time. These
theoretical predictions are illustrated by numerical
simulation and by experiment.
2. Theory

2.1. Notation

We represent time domain functions and coordinates
with lower-case letters, e.g., g(x,y), and frequency
domain with upper-case, e.g., G(X,Y). This study con-
siders only 3D experiments, where the generic coordi-
nates x/X and y/Y represent the two indirectly
observed dimensions, and where the third, directly
observed dimension is assumed to be collected and pro-
cessed conventionally. (The extension of these proposals
to higher dimensionality is briefly considered in Section
4.)

The asterisk * indicates convolution, as defined by
Bracewell [38]. d(u) is the Dirac delta function or its dis-
crete equivalent, as applicable. III(u) is the pulse train func-
tion, which is an infinite 1D string of delta functions,
positioned at integer values of u. The function sinc u is
defined as (sinpu)/pu. The notation Øuø indicates the ceiling
function, which rounds the real value u to the next higher
integer.
2.2. Point responses and sampling artifacts

Any spectrum calculated from discrete data will be, at
best, an approximation of the ‘‘true spectrum’’ of the con-
tinuous NMR signal, and the problem for designing and
evaluating sampling patterns is to assess the extent and
manner of the approximation. In different terms, we are
interested in predicting how Fdiscrete, the FT of the sampled
data fdiscrete, would differ from the true (continuous, ideal)
spectrum F.

To address this, we note that the sampling process is
equivalent to multiplying the continuous signal by a func-
tion that is one at any measured position, and zero other-
wise. Letting f and s represent the 2D continuous time
domain signal and the sampling function, respectively,
the measured data can be expressed as

fdiscreteðx; yÞ ¼ sðx; yÞf ðx; yÞ: ð1Þ
The convolution theorem of the FT indicates that the mul-
tiplication of two functions in the time domain is equiva-
lent to convolving their frequency domain transforms
[38]. Thus the frequency domain spectrum Fdiscrete calculat-
ed from the discrete data fdiscrete is given by the convolution

F discreteðX ; Y Þ ¼ SðX ; Y Þ � F ðX ; Y Þ: ð2Þ
Convolution modifies the lineshape of each peak in F,

such that it becomes a cross between the original line-
shape and the shape of S. At the same time, if S has fea-
tures that extend significantly beyond the origin, these will
appear as artifacts surrounding each peak in Fdiscrete. The
effect of changing the sampling pattern s is ultimately to
change the lineshape of each peak and the pattern of arti-
facts surrounding each peak. In the terminology of linear
response theory, S is the point response function of the
process, describing the response of the method for an infi-
nitely sharp point signal [39]. The characteristic S can be
determined for any sampling pattern s, either analytically,
or by a numerical evaluation in which the FT is computed
for a dataset containing the value 1 for the real compo-
nent of each sampling position [32]. The concept of the
point response was used in the development of
FT-NMR [39]. The connection between sampling and
artifacts was also discussed during the development of
nonuniform sampling methods for NMR [20], and has
been reviewed in [40].

When considering point responses for NMR sampling
patterns, it is important that the responses be evaluated
over regions that are significantly larger than the intended
spectral width w of the experiment, because different parts
of the point response can be ‘‘shifted into view’’ depending
upon peak positions. This geometry is illustrated in Fig. 1,
showing that S must be evaluated for a region that is at
least 2w wide on each axis. In the discussion below, we will
describe the features of point responses relative to the
generic spectral width w, where the ‘‘active region’’ of the
point response always has a radius of 21/2w and a size of
2w · 2w. We likewise measure time domain coordinates
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Fig. 1. Geometry of point responses and spectra. For a spectrum of width w (inner, shaded box), the portion of the point response that could appear in a
spectrum is the region of interest (ROI) of size 2w · 2w (middle box). Circularly symmetric artifacts in the point response must have a radius of at least
21/2w to avoid the ROI. In this paper, we plot point responses in a window (outer box) that is 2(21/2)w on each axis. (a) When a peak is in the center of the
spectrum, at X/Y coordinates (0,0), only the center (shaded portion) of the ROI is observed. (b) For peaks elsewhere in the spectrum, such as the corner
(�w/2, �w/2) as shown here, the full point response is shifted so that it remains centered on the peak, and other parts of the ROI (shaded) become visible.
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as multiples of the dwell time between rings Dr, which will
be determined below with respect to w.

2.3. The Fourier transform of a single ring of sampling points

The sampling patterns considered here all consist of con-
centric rings of sampling points. Such patterns can be
described as sums of individual rings of points of different
radii. Because of the linearity of the FT, the point response
can be calculated by transforming each ring independently,
and adding together the transforms.

Thus, the essential building block for analyzing concen-
tric ring sampling patterns is the Fourier transform of a
single ring of equally spaced sampling points [28,33,41,42]

P N ;r0;/ðX ; Y Þ ¼ 2N
X1

n¼�1
inJ nð2pr0RÞeinHþ/r0;

n ¼ 0;�2N ;�4N ; . . . ; ð3Þ

where r0 is the radius of the ring in the time domain, 2N is
the number of sampling points, / is the phase of the ring
relative to the x axis, Jn is the Bessel function of order n,
R = (X2 + Y2)1/2 and H = arctan Y/X. This can be derived
by computing the FT in polar coordinates, with respect to
azimuth, of the function describing a ring of points

qN ;r0;/ðr; hÞ ¼ dðr � r0ÞðN=pÞIIIðhN=pþ /Þ ð4Þ

as was shown previously [28,33,42]. Note the normalization
factor 2N in Eq. (3), which assumes importance here.

The FT of a ring of points is thus the superposition of a
series of functions that vary with radius as Bessel functions,
and with azimuth as sinusoids. Two examples of such
transforms are shown in Fig. 2. Regardless of the number
of points, the series will always include a zero-order term
J0(2pr0R), which is circularly symmetric and gives rise to
a ‘‘ripple pattern’’ centered on the origin of the transform.
The other terms of the series have orders that are multiples
of the number of sampling points. Because a Bessel func-
tion Jn(u) is approximately zero for u < n, a term of order
n is approximately zero up to the distance n/pr0 from the
origin. The term rises rapidly from nothing to a peak at
approximately n/pr0, and then oscillates at increasing dis-
tances from the origin. Thus for the whole series, only
the J0 term is active at the origin, and as the distance from
the origin increases, additional higher-order terms progres-
sively begin to contribute.

2.4. Concentric ring sampling

We define concentric ring sampling (CRS) as a method
wherein the time domain is sampled on rings spaced at
an equal time increment Dr. A sampling function for
CRS can be constructed as a summation of m rings, with
the number of sampling points on each ring j denoted as
2Nj and the phase of each ring as /j

sCRSðr; hÞ ¼
Xm

j¼1

qNj;rj;/j
ðr; hÞ: ð5Þ

The point response (using a polar FT) follows from Eq. (3):

SCRSðX ; Y Þ ¼
Xm

j¼1

P N j;rj;/j
ðX ; Y Þ

¼
Xm

j¼1

2Nj

X1
nj¼�1

inj Jnjð2prjRÞeinjHþ/j rj

" #
; ð6Þ
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Fig. 2. The Fourier transform of a ring of sampling points. Two examples are shown, each with 72 sampling points (N = 36) and phase 0, one with a
radius of 9Dr, the other 14Dr. (a) Positions of the sampling points for the two rings. The axes are measured in multiples of the dwell time Dr. (b) Schematic
showing the positions in the frequency domain at which the first of the higher-order Bessel terms (J72) begin for the two rings, relative to the region of
interest and the plotted transform size. Note that the ring of smaller radius in the time domain generates the higher-order terms of larger radii. (c) The FT
of the r0 = 9Dr ring. Note the J0 ‘‘ripple’’ pattern starting from the center, with the J72 term beginning close to the edge. (d) The FT of the r0 = 14Dr ring.
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where the index nj of the inner summation goes as
0,±2Nj,±4Nj, . . . for each ring.

An issue that arises in the processing of radially sampled
data by FT is the need to account for the unequal area den-
sity of the sampling pattern, which is accomplished in the
radial case by the polar FT’s factor rj [13,28,43]. However,
when the number of points on each ring is allowed to vary,
this is no longer a valid correction. Problems arise specifi-
cally from the factor 2Nj in Eq. (6), which for radial sam-
pling is constant over all j and may be ignored, but
which can vary in the general CRS case. Thus the proper
area density correction for CRS becomes rj/Nj, giving a
new, corrected point response

S0CRSðX ; Y Þ ¼
Xm

j¼1

X1
nj¼�1

inJ njð2prjRÞeinHþ/j rj

" #
: ð7Þ
2.5. Data processing

Obtaining a spectrum from CRS data requires an initial
processing step before the FT to convert from hypercom-
plex to complex data, as described previously
[6,7,9,28,30]; we recommend that the reader consult [28]
for a complete discussion. Briefly, linear combinations
are taken of the hypercomplex FIDs to yield complex-val-
ued data. While the original data occupies only the +x +y

quadrant (Nj/2 points on ring j), the conversion calculation
produces complex data for both the +x +y and �x +y

quadrants, with the latter being a reflection of the former
(yielding Nj total points on ring j) [28]. The transform of
either quadrant of data alone would yield a spectrum with
phase-twist lineshapes, but the use of both quadrants
allows one to obtain purely absorptive peaks [39].

Once the complex-valued data are available, there are
two options for computing the FT. One is the azimuthal
form of the polar FT, which we recently described [28],
involving (1) a 1D FT of each ring, with respect to h, fol-
lowed by (2) the summation of a series of terms that vary
as Bessel functions with respect to R and as sinusoids with
respect to H, weighted according to the Fourier coefficients
of the 1D transform. Alternatively, one could employ the
traditional 2D point-by-point discrete FT, as recently
suggested by Kazimierczuk and colleagues [30], adding a
weighting factor as we previously noted [28]

F ðX ; Y Þ ¼
X

j

f ðxj; yjÞe�2piðxjXþyjY ÞDAj; ð8Þ

where the summation is over all of the available sampling
points, each point j having a position (xj,yj) and a weight
DAj that is determined by the distribution of the sampling
points. For CRS, this transform would be computed as

F CRSðX ; Y Þ ¼
Xm

j¼1

XNj

k¼1

fCRSðrj; hj;kÞe�2pirjðX cos hj;kþY cos hj;kÞ

� rj

Nj
; ð9Þ

where a point j, k has a radial coordinate rj, an azimuthal
coordinate hj,k and a weighting factor DAj,k = rj/Nj. Eq. (9)
was employed to compute the transforms in this study.

2.6. Response from the zero-order terms

If the J0 terms of the corrected point response are sepa-
rated out, one can analyze several features that are com-
mon to all CRS patterns. Each ring at a different radius
rj contributes a J0 term with a different radial frequency
of oscillation, which combine to form the seriesXm

j¼1

J 0ð2prjRÞrj: ð10Þ

This summation is of vital importance, as in essence it is
responsible for the ability to obtain a valid spectrum for
this type of sampling. It was studied extensively by
Bracewell and Thompson [31], who found that it can be
expanded asXm

j¼1

J 0ð2prjRÞrj ¼
rmax

2pR
J 1ð2prmaxRÞ þ

X1
k¼1

pkðRÞ; ð11Þ
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where the first term on the right hand side (hereafter the
‘‘main term’’) generates the peak, while the higher order
terms pk lead to replications of the peak as ringlobes at dis-
tance increments of 1/Dr from the peak. This is illustrated
in Fig. 3a, where we plot Eq. (10) for m = 32, after convo-
lution with a Gaussian signal to remove truncation
artifacts; the peak and the first two ringlobes are shown.

The ringlobe of order k is given by

pkðRÞ ¼
Z p

0

nðR cos /� k=DrÞ þ nðR cos /þ k=DrÞ½ �d/;

ð12Þ

where

nðuÞ ¼ 2rmaxsincð2rmaxuÞ � rmaxsinc2ðrmaxuÞ: ð13Þ
(Ref. [31]). The ringlobes are the consequence of the dis-
crete sampling in r: as always with the FT, discrete sam-
pling leads to periodicity, and peak replications appear
with a spacing that is the inverse of the dwell time. Because
of the geometry, that periodicity takes on the form of ring-
lobes, rather than the direct replication of the peak seen in
Cartesian sampling.

The ringlobes are generated by the interaction of the J0

terms from different rings, at different radial frequencies,
which interfere constructively at intervals of 1/Dr. Fig. 3b
shows a cross section through the plot of Fig. 3a, illustrat-
ing the positioning and shape of the ringlobes. Bracewell
and Thompson [31] showed that the ringlobes of different
orders differ only by a scaling factor, the height of ringlobe
k being proportional to k�1/2. The shape of each ringlobe
after the integration of Eq. (12) was found to be closely
approximated (for R in the vicinity of k/Dr) by the unusual
expression
a b

Fig. 3. Ringlobes. In CRS, the discrete sampling of the time domain with respec
(a) The zero-order terms of the CRS point response, convolved with a Gaussian
are shown. (b) A cross-section through the plot in (a). The spacing of the ring
peak, reduced in size and shifted in phase.
S0ðRÞ ffi 2m

ffiffiffiffiffiffiffiffi
rmax

pR

r
sincð1=2Þ½2rmaxR� mk�; ð14Þ

where sinc(1/2) represents the half-order differentiation of
sinc, which is equivalent to multiplying by a window func-
tion of (2pr)1/2 in the time domain to change the lineshape,
and then shifting the phase by �45� in the frequency do-
main (Fig. 3b). Because of the theorem that f (a)

* g =
f * g(a), we can conclude that the shape of each ringlobe
reflects the shape of the original peak following apodiza-
tion and a �45� phase shift, possibly with added sinc wig-
gles for truncated signals. The phase shift leads to a
negative ‘‘skirt’’ on the inner side of each ringlobe, and also
to a slight negative slope on the baseline inside of the rin-
globe. These features are all apparent in Fig. 2, where the
original peak is Gaussian.

Thus if we are to avoid the intrusion of ringlobes into a
CRS spectrum, we must set the spacing between sampling
rings Dr to no more than 1/(21/2w), thereby putting the first
ringlobe at 1/Dr = 21/2w, at the edge of the R = 21/2w

region of interest of the point response. Assuming this con-
dition is met, one can guarantee that the zero-order terms
of Eq. (7) will lead to a correct and artifact-free spectrum,
differing from a conventional spectrum only in the base-
line’s slight negative slope. This is a radial analog to the ali-
asing phenomenon in Cartesian sampling, where the
spacing of points 1/Dx must be less than 1/w to prevent
the intrusion of artifact peaks.

2.7. Response from the higher-order terms

We have seen that each ring of a CRS pattern contrib-
utes a J0 term, and that the J0 terms from the different rings
combine to generate the peak. As described above in Sec-
tion 2.3, each ring also generates a series of higher-order
terms, of the form Jn(2pr0R)einH. These terms are purely
t to r leads to a radial periodicity in the spectrum., in the form of ringlobes.
signal to remove truncation artifacts. The peak and the first two ringlobes

lobes is indicated. Note that the shape of each ringlobe is the shape of the
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artifactural, and ideally would be excluded from the active
area of the point response completely.

Because of the fact that each term is approximately zero
for R < n/pr0, avoiding these artifacts is possible, depend-
ing upon the distribution of sampling points on the rings.
Since the artifacts caused by ring j become active at a cutoff
radius Rj = Nj/prj, the overall pattern is free from artifacts
within a ‘‘clear zone’’ of radius Rcz = min Rj. If Rcz P
21/2w, there will be no artifacts within the spectrum.

Radial sampling is a specific case of CRS, and the arti-
facts for radially sampled data processed by the FT follow
this behavior. In radial sampling Nj is the same for all
rings. While the artifacts from the innermost rings have a
very large Rj—and do not appear within the active region
of the point response—the artifacts from each successive
ring have progressively lower Rj, eventually intruding on
Table 1
Parameters of sampling patterns

Radial sampling LCRS a = p/2 LC

j Nj Rj Nj Rj Nj

1 36 16.21w 4 1.80w 4
2 36 8.10w 8 1.80w 6
3 36 5.40w 10 1.50w 8
4 36 4.05w 14 1.58w 10
5 36 3.24w 16 1.44w 12
6 36 2.70w 20 1.50w 14
7 36 2.32w 22 1.41w 16
8 36 2.03w 26 1.46w 18
9 36 1.80w 30 1.50w 20

10 36 1.62w 32 1.44w 24
11 36 1.47w 36 1.47w 26
12 36 1.35w 38 1.43w 28
13 36 1.25w 42 1.45w 30
14 36 1.16w 44 1.41w 32
15 36 1.08w 48 1.44w 34
16 36 1.01w 52 1.46w 36
17 36 0.95w 54 1.43w 38
18 36 0.90w 58 1.45w 40
19 36 0.85w 60 1.42w 44
20 36 0.81w 64 1.44w 46
21 36 0.77w 66 1.41w 48
22 36 0.74w 70 1.43w 50
23 36 0.70w 74 1.45w 52
24 36 0.68w 76 1.43w 54
25 36 0.65w 80 1.44w 56
26 36 0.62w 82 1.42w 58
27 36 0.60w 86 1.43w 60
28 36 0.58w 88 1.41w 64
29 36 0.56w 92 1.43w 66
30 36 0.54w 96 1.44w 68
31 36 0.52w 98 1.42w 70
32 36 0.51w 102 1.43w 72

Rcz 0.51w 1.41w

T 608 844 602

All distances are relative to the spectral width w. A dwell time of Dr = 1/(21/2

defined in the text in Section 2.8. For each sampling pattern, Nj indicates the n
sampling method, while Rj indicates the corresponding artifact-free radius of th
pattern is T = R (Nj/2 + 1). The artifact-free radius for the point response of
the active area of the point response (see Table 1 for an
explicit example). The observed clear zone is governed by
Rm, the cutoff for the last ring, and has a size

Rcz;radial ¼ N radial=prmax ¼
ffiffiffi
2
p

N radialw=pm ð15Þ
assuming that Dr = 1/(21/2w), which comes to 0.51w for
Nradial = 36 spokes and m = 32 rings (this sampling pattern
is plotted in Fig. 4a, and the point response in Fig. 5a).
Increasing the number of spokes leads to a corresponding
increase in Rcz, until the artifacts are eventually pushed
outside of the spectrum.

Beyond Rcz, the higher-order terms are sinusoidally
dependent on azimuth, which becomes important for deter-
mining the nature of the artifacts. Again taking the radial
case as an example, for R > Rcz,radial the artifacts are sinu-
soidal with respect to H, with 2Nradial cycles around the
RS a = 1.111 RLCRS a = 1.000 RLCRS a = 0.200

Rj Nj Rj Nj Rj

1.80w 2 0.90w 2 0.90w

1.35w 4 0.90w 2 0.45w

1.20w 6 0.90w 2 0.30w

1.13w 8 0.90w 2 0.23w

1.08w 10 0.90w 2 0.18w

1.05w 12 0.90w 4 0.30w

1.03w 14 0.90w 4 0.26w

1.01w 16 0.90w 4 0.23w

1.00w 18 0.90w 4 0.20w

1.08w 20 0.90w 4 0.18w

1.06w 22 0.90w 6 0.25w

1.05w 24 0.90w 6 0.23w

1.04w 26 0.90w 6 0.21w

1.03w 28 0.90w 6 0.19w

1.02w 30 0.90w 6 0.18w

1.01w 32 0.90w 8 0.23w

1.01w 34 0.90w 8 0.21w

1.00w 36 0.90w 8 0.20w

1.04w 38 0.90w 8 0.19w

1.04w 40 0.90w 8 0.18w

1.03w 42 0.90w 10 0.21w

1.02w 44 0.90w 10 0.20w

1.02w 46 0.90w 10 0.20w

1.01w 48 0.90w 10 0.19w

1.01w 50 0.90w 10 0.18w

1.00w 52 0.90w 12 0.21w

1.00w 54 0.90w 12 0.20w

1.03w 56 0.90w 12 0.19w

1.02w 58 0.90w 12 0.19w

1.02w 60 0.90w 12 0.18w

1.02w 62 0.90w 14 0.20w

1.01w 64 0.90w 14 0.20w

1.00w 0.90w 0.18w

528 119

w) is assumed. The LCRS and RLCRS methods and the parameter a are
umber of sampling points for ring j, which is determined according to the

e point response for that ring. The total number of points for each sampling
the full sampling pattern is Rcz = minRj.
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Fig. 4. CRS sampling patterns. All patterns shown for m = 32 rings. The LCRS and RLCRS methods and the parameter a are defined in the text in
Section 2.8. (a) Radial sampling, Nradial = 36. (b) LCRS, a = p/2. (c) LCRS, a = 1.111. (d) RLCRS, a = 1.0. (e) RLCRS, a = 0.2.

Fig. 5. Point responses for CRS patterns. For each pattern, a contour plot at �3% of peak height and a stacked plot viewed from above are given. The
LCRS and RLCRS methods and the parameter a are defined in the text in Section 2.8. (a) Radial sampling. Moving out from the center, one encounters
the first artifacts at 0.51w, where the J72 term becomes active. In the stacked plot, this appears as a transition from ripples to ridges. The contour plot
makes the radial dependence on a Bessel function more apparent, showing that the response oscillates with respect to R. At �w, the number of ridges
doubles, and a new ring of intensity is encountered as the J144 term becomes active. Finally, at 21/2w is the first ringlobe. (b) LCRS with a = p/2. There are
no artifacts inside of the first ringlobe. (c) LCRS a = 1.111. Although there are artifacts inside the first ringlobe, due to their angular dependence, they are
almost entirely outside the region of interest (ROI). (d) RLCRS a = 1.000 (phases randomized). The artifacts intrude on the ROI, but still occupy less of
the spectrum than with radial sampling. (e) RLCRS a = 0.200 (phases randomized). The artifacts occupy all of the spectrum and appear like random
noise.
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circle. Because each ring has the same Nj = Nradial and the
same relative phase /j = 0, the artifacts from the different
rings have the same azimuthal frequencies and phases,
and form the familiar set of ridge artifacts [28].
2.8. Optimization of the distribution to minimize artifacts

The portion of the spectrum affected by artifacts can be
reduced by distributing the sampling points to maximize
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Rcz. For a given number of sampling points, the maximum
Rcz is achieved by setting Nj such that all Rj are approxi-
mately equal. To obtain Rcz equal to a given target size
Rtarget most efficiently, the distribution should be designed
to give nearly equal Rj = Rtarget for all rings.

Letting Rtarget be the desired size of the clear zone, the
distribution with equal Rj for all rings is achieved with
the equation

Nj ¼ 2dRtargetprj=2e; ð16Þ
where we require Nj/2, the number of physically observed
sampling points prior to reflection into the �x +y quadrant
(see Section 2.5 above), to be an integer (the ceiling brack-
ets round the enclosed quantity up to the next integer).
This distribution has the property that the number of
points on each ring grows as a linear function of the ring
number, which becomes clear when Eq. (16) is rewritten as

Nj

2
¼ pRtargetj

2
ffiffiffi
2
p

w

� �
¼ daje; a 	 pRtarget

2
ffiffiffi
2
p

w

� �
: ð17Þ

We designate sampling patterns derived from Eqs. (16)/
(17) linearly increasing concentric ring sampling (LCRS).

The total number of physically observed sampling
points needed for LCRS for a given a parameter is

T a ¼
Xm

j¼1

daje; ð18Þ

which is approximated to within am points by removing the
ceiling brackets

T a 

Xm

j¼1

aj ¼ 1

2
amðmþ 1Þ: ð19Þ

Obtaining Rtarget = 21/2w, which is the minimum that
would guarantee that an artifact term cannot become
active within a spectrum, requires that a = p/2. The sam-
pling pattern for this case with m = 32 rings is plotted in
Fig. 4b, and the Nj and Rj values are given in Table 1. Note
from Table 1 that the rings all have Rj 
 21/2w as intended.
The point response is plotted in Fig. 5b; the first ringlobe is
visible as a ring around the outside of the pattern, and
otherwise only the peak and the truncation artifacts of
the main term are observed. However, a = p/2 LCRS
requires a fairly large number of sampling points (844 in
the case of m = 32 rings), representing only a small savings
over the conventional sampling, and it would be desirable
to find approaches requiring fewer sampling points. While
smaller values of a would potentially lead to the intrusion
of artifacts in the spectrum, whether this is problematic
would depend on the nature of those artifacts.

2.9. The form of the artifacts in LCRS, outside the clear zone

In a case of LCRS with Rcz < 21/2w, the form of the
observed artifacts becomes an important consideration.
For distributions with Rj = Rcz, one expects the artifacts
to peak at approximately the same radial coordinate Rcz.
This would lead to a ringlobe of artifactural intensity at
Rcz, were it not for the additional modulation of each arti-
fact term with respect to H, by the factor einH. For a = 1.0,
and assuming that each ring is measured with the same
phase /j = 0, the result at Rcz is not a ringlobe but rather
a truncated 1D Fourier series with respect to H

S0a¼1:0ðRcz;HÞ 

Xm

n¼1

ðcos 4nHþ i sin 4nHÞ; ð20Þ

which is written as an approximation since the radial
dependencies of the Jn(2prjR) functions are not exactly
the same for all orders of Jn. Because the waves generated
by the different rings of sampling points have different
angular frequencies, they interfere destructively for most
values of H, but reinforce at intervals of DH = p/2, with
only small truncation wiggles in between. The constraint
that Nj/2 be an integer causes the angular frequencies of
the individual rings to be multiples of 4, leading to the peri-
odicity in H of 2p divided by 4. The resulting artifact peaks
somewhat resemble aliasing artifacts in Cartesian sampling
regimes, although with distorted peak shapes.

Provided that all rings have the same phase /j = 0, the
result for other values of a

S0a6¼1:0ðRcz;HÞ 

Xm

n¼1

ðcos 4daneHþ i sin 4daneHÞ; ð21Þ

is very similar. By the definition of LCRS, the number of
sampling points per ring is always an integer multiple of
four, and the point response will thus always have the four
strong axial artifact peaks at intervals of p/2, as for
a = 1.000. The effect of a „ 1.000 on the response is primar-
ily to change the shapes of the wiggles between the artifact
points slightly, and in some cases to introduce additional
small artifacts close to the axes.

The fact that the only significant artifacts in LCRS spec-
tra are found on the axes suggests that one could obtain an
almost perfect spectrum using a distribution with Rtar-

get = w, which would require a = 21/2p/4 
 1.111. The point
response for this pattern is shown in Fig. 5c, while the point
distribution is given in Table 1 and plotted in Fig. 4c. Table
1 shows that the artifacts can be expected to start at the
radius Rcz = w. The DH = p/2 periodicity leads to artifact
peaks along the axes at R = Rcz that are �28% of the true
peak height. Two additional artifact peaks are found next
to each axial artifact, at �5% of peak height. For other
H, however, the artifacts are <1% of the peak height up
to the start of the first J0 ringlobe at R = 1/Dr. All signifi-
cant artifacts are found along and close to the axes, and
therefore outside the 2w · 2w region of interest. This distri-
bution could be considered the most efficient artifact-free
LCRS pattern possible.

Using the LCRS approach with even fewer sampling
points (a< 21/2p/4) requires accepting artifacts of one
form or another, but those artifacts can be made more
tolerable by changing the approach slightly. The distribu-
tion described above concentrates the majority of the
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artifacts along the axes, which is generally only acceptable
if those concentrated artifacts can be kept beyond the
edge of the region of interest. However, when the sam-
pling is insufficient to achieve Rcz > w, instead of concen-
trating the artifacts along the axes, it is advantageous to
distribute them as evenly as possible in H, giving them
the smallest impact on the resulting spectrum. This can
be accomplished by randomizing the phases /j of the
sampling rings, in a phase-randomized LCRS (RLCRS).
Note that this phase parameter does not refer to the
phase of the signals but rather the relative orientations
of the sampling rings. The resulting artifacts begin sharply
at Rcz and are nearly evenly distributed about H, fluctuat-
ing in a manner similar to random noise. When random-
izing the phases it is necessary to apply an additional
correction to the point-by-point weighting in the DFT
calculation (Eq. (9)), to account for the fact that the
points closest to the axes do not have the same uniform
1/Nj area density as the other points.

An example of RLCRS with randomized phases is
shown in Fig. 4d, for a = 1.000. The artifacts range up to
10% of the peak height (comparable to radial sampling),
but have an appearance that is quasi-random. This figure
points to one minor consequence of the method that should
be noted: randomizing the phase disturbs the symmetry of
the sampling pattern following reflection into the �x +y

plane, leading to minor baseline disruption within the clear
zone, albeit at <1% of peak height. While distortion of the
peak shape from this change is theoretically possible, we
have not been able to detect it, suggesting that the distor-
tion is less than the calculation precision. The a = 1.000
sampling pattern is plotted in Fig. 4d, and the relevant
parameters are given in Table 1.

The much more extreme case of a = 0.200, which
involves a 80% reduction in measurement time over the
artifact-free LCRS case, has also been included in Table
1 and Figs. 4–6. In this case, the artifacts have assumed
the appearance of random noise distributed throughout
the plane at a level of �10% of peak height.

2.10. Sensitivity considerations

The weighting factors used to correct for unequal area
density in the sampling pattern can have an effect on the
sensitivity of the resulting spectrum. To quantitate these
effects, we apply the principles of signal averaging while
assuming a non-decaying signal and a standard Gaussian
noise distribution, to reduce the complexity of the analy-
sis. It should be noted that we refer here to the true noise
level, i.e., the noise that would be observed in the clear
zone of the spectrum. With very low a, or for many cases
of radial sampling, the apparent noise would be larger due
to the presence of artifacts. For general CRS, the signal
and noise levels for ring j (rj and gj, respectively) would
be

rj ¼ r0N j; gj ¼ g0

ffiffiffiffiffiffi
N j

p
; ð22Þ
where r0 and g0 are the signal level and the standard devi-
ation of the noise distribution, respectively, for a single
sampling point. The signal level r of the spectrum is not
dependent on the sampling pattern, due to the normaliza-
tion by 1/Nj

r ¼
Xm

j¼1

rj

N j
rj ¼ r0

Xm

j¼1

j ¼ 1

2
r0mðmþ 1Þ; ð23Þ

while the standard deviation of the noise g does depend on
the distribution of sampling points among the rings

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

rj

N j

� �2

g2
j

vuut ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

r2
j

Nj

vuut : ð24Þ

To facilitate the comparison of results from different sam-
pling patterns, it will be helpful to define a relative sensitiv-

ity measure m

m ¼ ðr=gÞffiffiffiffiffiffi
2T
p
ðr0=g0Þ

; ð25Þ

which is the ratio of the signal-to-noise for an experimental
sampling pattern to that of the Cartesian sampling pattern
with the same number of sampling points. Note that in this
discussion we always count the number of data points and
assess the sensitivity per point r0/g0 after conversion from
hypercomplex to complex data (necessitating the factor of
2 in the denominator of Eq. (25), since T is defined in Eq.
(18) as the number of points before reflection).

First, we consider the result for radial sampling. In this
case, the noise would be

gradial ¼
g0ffiffiffiffiffiffiffiffiffiffiffiffi

N radial

p

ffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

j2

vuut

¼ g0ffiffiffiffiffiffiffiffiffiffiffiffi
N radial

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
mðmþ 1Þð2mþ 1Þ

r ð26Þ

leading to a signal to noise ratio of

r
gradial

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N radial

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mðmþ 1Þ
2ð2mþ 1Þ

s !
ðr0=g0Þ; ð27Þ

and a relative sensitivity of

mradial ¼
r=gradialffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mN radial

p
ðr0=g0Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðmþ 1Þ

2ð2mþ 1Þ

s
: ð28Þ

The relative sensitivity for the same time thus comes to
87.3% for m = 32 rings, and approaches a value of 31/2/
2 
 86.6% in the limit of large m. This �13% sensitivity loss
for radial sampling is a consequence of the reweighting of
the sampling points in the FT by the function rj, which cor-
rects for the uneven distribution of the points in the time
domain. Interestingly, this sensitivity loss is not affected
by the number of radial spokes Nradial.
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The LCRS case gives somewhat different results.
Approximating the number of points on each ring 2Øajø
as 2aj, one obtains a noise level of:

ga ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j¼1

r2
j

2daje

vuut


 g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2a

Xm

j¼1

j

vuut ¼ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2a
1

2
mðmþ 1Þ

� �s
:

ð29Þ

The signal to noise ratio is thus

r
ga

¼
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
mðmþ 1Þ

r !
ðr0=g0Þ; ð30Þ

and the sensitivity relative to Cartesian sampling is:

ma ¼
r=gaffiffiffiffiffiffiffiffi

2T a

p
ðr0=g0Þ

¼

ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
mðmþ 1Þ

q	 

ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
mðmþ 1Þ

q	 
 ¼ 1:

ð31Þ

Thus we find that LCRS has identical sensitivity to
Cartesian sampling in all cases, for the same measure-
ment time.
Fig. 6. Experimental results. Shown is a representative N/CO plane from the 3
same resolution as the CRS spectra. (b) Radial sampling. Note that almost all o
is indistinguishable from the Cartesian, except for some ripple truncation artifa
control. (e) RLCRS a = 1.000. The standard CRS artifacts from higher-order B
peak height. The randomization of the phases disturbs the symmetry of the s
baseline of 1–2% of peak height. (f) RLCRS a = 0.200. In this extreme case, d
appear like random noise. However, the resolution is the same as for the other s
same number of points as in the RLCRS a = 0.200 experiment. Reducing the
requires a severe loss of resolution. By comparison, reducing the measureme
artifacts.
3. Results

To demonstrate the LCRS approach, we collected 3D
HNCO spectra from the B1 domain of protein G (GB1)
using the a = p/2, a = 1.111, a = 1.000, and a = 0.200
LCRS patterns described above, which we compare to
radial sampling for a similar number of sampling points,
and to conventional Cartesian sampling at the same resolu-
tion (however, see Section 4 regarding resolution). The
spectral width was w = 2000 Hz for both the N and the
CO axes, requiring that the spacing between rings Dr be
1/(21/2w) = 1/(21/2 · 2000) 
 2900 Hz. The CRS spectra
were collected with m = 32 rings of points. The distribu-
tions of sampling points in the LCRS patterns are given
in Table 1 and Fig. 4; they required 844, 602, 528, and
119 points, respectively. The Cartesian and radial controls
used 1024 and 608 points, respectively.

The LCRS spectra correctly reproduce all peaks in the
conventional spectrum, and with the same resolution.
Fig. 6 shows stacked plots of a representative plane from
this spectrum, as reproduced by each of these methods.
The a = p/2 spectrum is indistinguishable from the conven-
tional. Importantly, however, the a = 1.111 is also nearly
identical to the conventional result, despite having a <p/2.
By comparison, a radially sampled experiment with projec-
tions at 5� increments (Nradial = 36 measured spokes, after
reflection), collected in the same measurement time as the
D HNCO spectrum of GB1 (HN = 7.95 ppm). (a) Cartesian control at the
f the baseline is filled with ridge artifacts. (c) LCRS a = p/2. The spectrum

cts (<1%). (d) LCRS a = 1.111. This spectrum is also nearly identical to the
essel terms are visible, in the farthest corner to the left, at a level of �5% of
ampling pattern upon reflection of the data, leading to a variation in the
etermined with only 120 sampling points, the artifacts cover the plane and
ampling patterns. (g) A truncated version of the Cartesian control, with the
number of points in Cartesian sampling without introducing aliased peaks
nt time for LCRS/RLCRS preserves resolution but introduces low-level
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a = 1.111 spectrum, shows substantial artifacts covering a
large portion of the plane (starting at a distance of
0.51w = 1020 Hz from each peak).

Reducing the number of sampling points for m = 32
rings below 602 points (i.e., a < 1.111) requires introducing
the RLCRS method described above. The result for
a = 1.000 shows artifacts that reach as much as 10% of
peak height, but which do not begin until a distance of
0.90w = 1800 Hz. They are therefore observed only for
peaks that are near the edges of the spectrum, and when
they are observed, they are found only towards the corners,
occupying a much smaller part of the spectrum than in
radial sampling. Additionally, because of the phase ran-
domization, their form appears like random noise, rather
than the ridge shapes found in the radial spectra. The large
size of the artifact-free zone around each peak substantially
reduces the chance of the artifacts from any one peak inter-
fering with the shapes of other peaks, as would be the case
for radial sampling. The a = 0.200 result also shows arti-
facts at 10% of peak height, but in this case covering almost
the entire plane, and appearing as random noise. The reso-
lution of the peak is the same as in the cases with more
sampling points, however. For comparison, in Fig. 6g the
Cartesian data were truncated to have the same number
of sampling points as in the RLCRS a = 0.200 experiment,
showing how one can reduce the measurement time in
LCRS/RLCRS while preserving resolution (at the expense
of low-level artifacts), while reducing the measurement
time for Cartesian sampling requires a severe loss of
resolution.

4. Discussion

4.1. Dwell time and resolution

Because CRS methods produce ringlobe artifacts at
radial intervals of 1/Dr, it is necessary to set Dr = 1/(21/2w),
rather than the usual 1/w of Cartesian sampling. This
reduces the potential efficiency of the method, since the
resolution achieved for a given number of rings m is
1/mDr = 21/2w/m instead of w/m. We have previously
enhanced the efficiency of radial sampling by adjusting Dr

depending on the azimuth h, according to the equation

Drh ¼
1

wðcos hþ sin hÞ ð32Þ

(assuming here a square spectrum; Ref. [10]]). This equa-
tion maximizes the resolution in each direction, making it
possible to obtain spectra of very high resolution on the
orthogonal axes without the intrusion of ringlobe artifacts.
While we did not apply that technique here, to simplify the
theoretical analysis, it should nonetheless be feasible to ap-
ply this in practice for any CRS method, including LCRS.
This would allow one to obtain a spectrum at a higher res-
olution than is here achieved. Our previous work suggests
that any distortion caused by applying Eq. (32) would be
minor [13,44]; a full quantitative analysis is in progress,
along with an analysis of cases with unequal spectral
widths on the two axes.

4.2. Comparison of sampling methods

Comparing the two CRS approaches described here,
LCRS and radial sampling, is somewhat complicated due
to the number of variables involved and their complex
interdependencies. It is particularly challenging to address
the relative efficiencies of the methods, in terms of the
results achieved for a given measurement time. However,
the analysis becomes tractable if one fixes a ‘‘target value’’
for at least one parameter, and evaluates the relative per-
formance of the two methods when optimized to achieve
the target. We will consider two such cases here: In the first,
we seek to achieve a fixed resolution, while in the second,
we seek to achieve an artifact-free spectrum. For the latter,
it is also meaningful to make a comparison with Cartesian
sampling.

4.2.1. Comparison of LCRS and radial sampling for a fixed

target resolution
The choice of the number of rings m directly controls the

final resolution of the experiment, which is equal to the
inverse of the maximum evolution time 1/rmax = 1/
mDr = 21/2w/m, assuming a square spectrum. Note that
the resolution in CRS is the same in all directions, since
the maximum evolution time is the same in all directions.
For the analysis below, given a specific target value of m,
we vary the number of sampling points T, a direct surro-
gate of the measurement time, and evaluate the effects on
artifacts and sensitivity.

The first parameter to consider is the size of the artifact-
free radius Rcz, measured relative to the spectral width w.
With m fixed, the number of points for LCRS is adjusted
by varying a. Using the approximation in Eq. (19), we find
that Rcz is

Rcz;LCRS ¼
4
ffiffiffi
2
p

wT
pmðmþ 1Þ : ð33Þ

In the case of radial sampling, when m is fixed, the number
of measurement points is determined by the choice of the
number of radial spokes Nradial/2. The form of the arti-
fact-free radius with respect to T turns out to be surprising-
ly similar to that of LCRS, the difference being a factor of
two

Rcz;rad ¼
2
ffiffiffi
2
p

wT
pm2

: ð34Þ

These curves are plotted in Fig. 7a, assuming m = 32. In
terms of the artifact-free radius of the spectrum, LCRS is
twofold more efficient than radial sampling.

Additional insight into the spectral quality can be
gained by examining the deviation of the spectrum from
the true spectrum as a function of the number of sam-
pling points. Figs. 7b–d plot the largest deviation, number
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Fig. 7. Comparison of LCRS with radial sampling at a fixed resolution. All graphs are for m = 32 rings and Dr = 1/(21/2w). (a) Theoretical Rcz vs. the total
points T. The size of the clear zone (Rcz) is twice as large with LCRS as for radial for the same measurement time. (b) The size of the largest artifact vs. T.
In LCRS, the largest artifact is substantial as the number of points increases until a = 1.111 (here �600 points), where the large axial artifacts pass outside
the spectrum. For a > 1.111 LCRS has the smallest artifacts. For a < 1.111, it is best to use the phase randomized version of LCRS, with artifact sizes
comparable to radial, but with much less area of the spectrum occupied by the artifacts than with radial sampling. (c) Number of points with >1%
deviation vs. T. The LCRS methods have a much smaller area of the spectrum occupied with artifacts. (d) RMS deviation vs. T. The RMS deviation of the
LCRS spectra is consistently lower than for radial sampling. (e) Theoretical signal/noise relative to that of a single measurement point vs. T. The sensitivity
of LCRS is equal to Cartesian sampling, and �13% better than radial sampling.
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of points with a deviation >1%, and the RMS deviation
for the whole spectrum, respectively, as functions of T.

The size of the largest artifact shows the expected
sharp drop for LCRS at a = 1.111, as the large axial arti-
facts are pushed beyond the edge of the spectrum (with a
tail, however, due to the somewhat long tails of these axi-
al artifact peaks). The other two measures, however, best
illustrate the advantages of LCRS, showing a significantly
smaller RMS deviation, and far fewer points with >1%
deviation. The phase randomization approach avoids
large artifacts for a < 1.111, but for a > 1.111 LCRS has
lower artifacts than RLCRS. We can therefore conclude
from Figs. 7a–d that (1) artifact-free spectra can be
obtained with far fewer points in LCRS than with radial
sampling, and (2) when artifacts are observed in LCRS,
they occupy proportionately less area of the spectrum,
and are smaller, than for radial sampling in the same
measurement time.

LCRS is also superior to radial sampling in terms of sen-
sitivity when seeking a fixed resolution. The signal-to-noise
ratios of the two methods are
r
gLCRS

¼
ffiffiffiffiffiffi
2T
p

; ð35Þ

for LCRS and

r
gradial

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T ðmþ 1Þ

1þ 2m

r
ð36Þ

for radial sampling. These curves are plotted in Fig. 7e for
m = 32. LCRS has the same sensitivity as Cartesian sam-
pling, for any choice of measurement time. By comparison,
radial sampling trails Cartesian sampling and LCRS in
sensitivity by �13%.

4.2.2. Comparison of LCRS, radial sampling and Cartesian

sampling for an artifact-free spectrum

We now compare the results when T is varied, and the
other parameters are adjusted to obtain an ‘‘artifact-free’’
spectrum. We will here consider an LCRS spectrum with
Rcz = w (a = 1.111) to be effectively free of artifacts >1%
of peak height, while for radial sampling we require that
Rcz = 21/2w, since radial artifacts are equally strong for
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all H. Thus in the LCRS case, we constrain a and adjust m,
with T following according to Eq. (19)

m ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8T
a
þ 1

r
� 1

 !
: ð37Þ

For radial sampling, m and Nradial are adjusted simulta-
neously to maintain the fixed ratio Nradial = pm, according
to the relationships

m ¼
ffiffiffiffiffiffi
2T
p

r
; N radial ¼

ffiffiffiffiffiffiffiffiffi
2pT
p

: ð38Þ

If the resolution 1/rmax = 1/mDr is plotted as a function of
T, one obtains the curves in Fig. 8a. Here, we also include a
Cartesian curve based on a resolution along each axis of
w/T1/2, assuming a square spectrum of width w, a dwell
time on each axis of Dr = 1/w and T1/2 · T1/2 sampling
points. Even without the use of Eq. (32), we find that the
resolution of LCRS when seeking an artifact-free spectrum
tracks with that of conventional sampling: the same maximum
evolution time on each axis, and therefore the same resolu-
tion, is achieved for the same overall number of points. By
comparison, radial sampling requires a larger number of
sampling points than either LCRS or Cartesian sampling
to obtain an artifact-free spectrum at the same resolution.

In terms of sensitivity under these conditions, once again
we find that LCRS is superior to radial sampling, and on
par with Cartesian. Using Eqs. (37) and (38), we derive
the signal-to-noise per sampling point for LCRS with a
fixed to be

r
gLCRS

¼
ffiffiffiffiffiffi
2T
p

; ð39Þ

which is the same as for Cartesian sampling, while for radi-
al sampling under these constraints it is

r
gradial

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3T ðp�

ffiffiffiffiffiffiffiffiffi
2pT
p

� 4T Þ
p� 8T

s
: ð40Þ

These curves are plotted in Fig. 8b.
a b

Fig. 8. Comparison of LCRS with radial and Cartesian sampling, when configu
points T. The resolution of LCRS and Cartesian sampling for the same measure
Theoretical signal/noise relative to that of a single sampling point vs. T. The
4.3. Extension to higher dimensionality

The LCRS method should extend readily to higher-
dimensionality spectra. Instead of rings, one would
have concentric shells or spheres of sampling points.
As with radial sampling, one expects the benefits of
LCRS to be greater for higher-dimensional cases than
for 3D.

4.4. Comparison to other sparse sampling methods

In this study, we have not attempted to compare
LCRS with other forms of sparse sampling, such as
the exponentially weighted random sampling methods.
While our approach has been to design a sampling pat-
tern that would place its artifacts outside the field of
view whenever possible, in the extreme case of RLCRS
with very small a the methods share in common the
effect of spreading the artifacts as evenly as possible over
the plane, in a form that resembles random noise. In the
exponential sampling approach, nonlinear processing
methods are typically used to reduce this artifact level
substantially; the literature suggests that with FT pro-
cessing the artifact levels for the two sampling approach-
es would be similar [20]. It would be worthwhile in the
future to develop a formulation of maximum entropy
reconstruction for polar coordinates, which might signif-
icantly reduce the artifact levels, and which would also
permit a direct comparison of the two sampling
approaches to be made. A comparison to other
approaches suggests that the CRS methods could be fur-
ther optimized to improve resolution and sensitivity by
taking into account the signal envelope [45].

While this paper was in review, a study by Kazimierc-
zuk et al. presenting results for FT processing of random-
ly distributed sampling points was published [46]. It
would be interesting to compare all of these methods in
the future.
red to obtain an artifact-free spectrum. (a) Theoretical resolution vs. total
ment time are almost identical, and superior to that of radial sampling. (b)

sensitivity of radial sampling lags behind the other two methods.
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5. Conclusions

We have described a generalization of radial sampling
that we call concentric ring sampling (CRS), and have pre-
sented a comprehensive analytical treatment of the results,
including spectral quality and sensitivity. CRS methods
reproduce peaks quantitatively, although possibly with
artifacts, depending on the number of points used. The
new LCRS method introduced here can produce an arti-
fact-free spectrum with equal measurement time and sensi-
tivity to Cartesian sampling. Further, in cases of reduced
measurement time where artifacts are present, the phase-
randomized RLCRS result will have fewer and smaller arti-
facts than radial sampling for the same number of sampling
points. Additionally, the sensitivity of LCRS and RLCRS
is better than that of radial sampling. We expect the
approach employed here to serve as the basis for develop-
ing sampling methods of even greater efficiency in the
future.

6. Methods

Point responses and simulated spectra were calculated
from the analytical equations using custom C++ pro-
grams, which are available upon request. For the phase-
randomized RLCRS method, the phase of each ring /j

was set to a number between 0 and p/2 chosen at random
and with uniform probability via the Boost MT19937 pseu-
do-random number generator and the Boost uniform vari-
ate generator (Boost Random Number Library, Boost
C++ Libraries, Release 1.32, http://www.boost.org/libs/
random). FTs of simulated time domain data were comput-
ed using Eq. (9). All data points on a ring received the same
weight rj/Nj, except for phase-randomized RLCRS pat-
terns, in which the weights of the two points on each ring
closest to the x and y axes were adjusted depending on
the phase of the ring, in proportion to the relative area
of the plane attributable to each point. The assessments
of artifacts in Section 4.2 were determined by subtracting
the normalized simulated point responses with different
parameters from a reference point response of LCRS
a = p/2, which shows only the J1 truncation artifacts, to
yield a difference spectrum. The relevant statistics were
then computed from this difference spectrum.

NMR data were collected on a Varian INOVA
600 MHz spectrometer equipped with a triple-resonance
cryoprobe with Z-axis gradients. A 2 mM sample of
GB1, uniformly labeled with 13C and 15N, was used, and
all experiments were recorded at 25 �C. The schedules of
sampling points for CRS experiments were as given in
Table 1 and Fig. 4, with a spectral width w of 2000 Hz
and a dwell time Dr = 0.345 ms. CRS experiments were col-
lected with four transients per FID, for total measurement
times: radial, 3.67 h; LCRS a = p/2, 5.08 h; LCRS
a = 1.111, 3.63 h; RLCRS a = 1.0, 3.18 h; RLCRS
a = 0.2, 0.64 h. Data were initially processed using PRSP

[44]and NMRPipe [47]. The final 3D HNCO spectra were
computed by a custom C++ program implementing Eq.
(9), which is available upon request. Data were apodized
using cosine functions in the N and CO dimensions before
transformation. Cartesian data were collected with 32 com-
plex points on each indirect axis and the same dwell time of
0.345 ms, for a total time of 6.17 h for the same number of
transients as in the CRS cases, and were processed using
NMRPipe.
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